Abstract: Salmonella can become viable but nonculturable (VBNC) in response to environmental stressors, but the induction of the VBNC state in Salmonella contaminating ready-to-eat dried fruit is poorly characterized. Dried apples, strawberries, and raisins were mixed with a five-strain cocktail of Salmonella at 4% volume per weight of dried fruit at 109 CFU/g. The inoculated dried fruit were then dried in desiccators at 25°C until the water activity (aw) approximated that of the uninoculated dried fruit. However, Salmonella could not be recovered after drying, not even after enrichment, suggesting a population reduction of approximately 8 log CFU/g. To assess the potential impact of storage temperature on survival, dried apples were spot-inoculated with the Salmonella cocktail, dried under ambient atmosphere at 25°C, and stored at 4 and 25°C. Spot inoculation permitted recovery of Salmonella on dried apple after drying, with the population of Salmonella decreasing progressively on dried apples stored at 25°C until it was undetectable after about 46 days, even following enrichment. The population decline was noticeably slower at 4°C, with Salmonella being detected until 82 days. However, fluorescence microscopy and laser scanning confocal microscopy with the LIVE/DEAD BacLight bacterial viability system at time points at which no Salmonella could be recovered on growth media even following enrichment showed that a large proportion (56 to 85%) of the Salmonella cells on the dried fruit were viable. The data suggest that the unique combination of stressors in dried fruit can induce large numbers of VBNC cells of Salmonella.

Access the publication

This work was supported by the IAFNS Food Microbiology Committee