The use of post-consumer recycled (PCR) polymers in food contact materials (FCMs) can facilitate achieving a circular economy by reducing environmental waste and landfill accumulation. This study aimed to identify potentially harmful substances, including non-intentionally added substances (NIAS) and unapproved intentionally added substances (IAS), in polyolefin samples from material recovery facilities using gas-chromatography mass-spectrometry. Selected phthalates and bisphenols were quantified by targeted gas-chromatography tandem mass-spectrometry. The analysis detected 9 compounds in virgin polymers and 52 different compounds including alcohols, hydrocarbons, phenols in virgin and hydrocarbons, aromatic, phthalates, organic acids, per- and polyfluoroalkyl substances (PFAS) in PCR polymers. The Cramer classification system was used to assess the Threshold of Toxicological Concern associated with the detected compounds. The PCR sample showed a slightly higher proportion of Cramer Class III compounds (48.08 %) than the virgin sample (44.44 %), indicating higher potential for risk. Quantification detected bisphenols only in PCR material including BPA (2.88 ± 0.53 μg/g), BPS (5.12 ± 0.003 μg/g), BPF (3.42 ± 0.01 μg/g), and BADGE (4.638 μg/g). Phthalate concentrations were higher in PCR than virgin samples, with the highest levels detected as DIDP, at 6.18 ± 0.31 μg/g for PCR and 6.04 ± 0.02 for virgin. This study provides critical understanding of the safety and potential risks associated with using PCR polyolefins from different sources in food contact applications.

Access full article.

This work was supported by IAFNS Food Packaging Safety & Sustainability Committee.